Implementation of Artificial Intelligence-Assisted Learning to Optimize Biomechanical Techniques and Decision Making Skills in Basketball Training for Young Athletes

Authors

  • Yopi Meirizal

DOI:

https://doi.org/10.37742/jmpo.v6i2.176

Keywords:

artificial intelligence, biomechanics, decision making, basketball, young athletes

Abstract

This study analyzes the effectiveness of AI-assisted learning implementation in optimizing biomechanical techniques and decision-making skills of young basketball players. Using a quasi-experimental design with a pretest-posttest control group, the study involved 40 Bandung Regency basketball club athletes (aged 14-17 years) through a total sampling technique. The research instruments used the Biomechanical Assessment Protocol (reliability 0.91) and the Basketball Decision-Making Test (reliability 0.88). The experimental group showed significant improvements in biomechanical techniques from M=64.35 (SD=7.84) to M=82.45 (SD=5.67), t(19)=-15.23, p<0.001, and decision-making skills from M=61.80 (SD=8.92) to M=80.15 (SD=6.34), t(19)=-13.87, p<0.001. The posttest difference between the experimental and control groups was highly significant (p<0.001) with Cohen's d > 1.5. AI-assisted learning was shown to be effective in optimizing the biomechanical technique and decision-making skills of young basketball players with a very large effect size

References

Baena-Extremera, A., Ruiz-Montero, P. J., Hortigüela-Alcalá, D., & Fernández-Fernández, J. (2020). Analysis of engagement and its relationship with motivation in physical education. Apunts Educación Física y Deportes, 142, 8–16. https://doi.org/10.5672/apunts.2014-0983.es.(2020/4).142.02

Bartlett, R. (2001). Performance analysis: Can bringing together biomechanics and notational analysis benefit coaches? International Journal of Performance Analysis in Sport, 1(1), 122–126. https://doi.org/10.1080/24748668.2001.11868256

Bunker, R. P., & Thabtah, F. (2019). A machine learning framework for sport result prediction. Applied Computing and Informatics, 15(1), 27–33. https://doi.org/10.1016/j.aci.2017.09.005

Buszard, T., Farrow, D., Reid, M., & Masters, R. S. W. (2014). Modifying equipment in early skill development: A tennis perspective. Research Quarterly for Exercise and Sport, 85(2), 218–225. https://doi.org/10.1080/02701367.2014.893054

Claudino, & Gustavo, J. (2019). Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: a Systematic Review. Sports Medicine - Open, 5(1). https://doi.org/10.1186/s40798-019-0202-3

Claudino, J. G., Capanema, D. O., de Souza, T. V, Serrão, J. C., Machado Pereira, A. C., & Nassis, G. P. (2019). Current approaches to the use of artificial intelligence for injury risk assessment and performance prediction in team sports: A systematic review. Sports Medicine-Open, 5(1), 28. https://doi.org/10.1186/s40798-019-0202-3

Colyer, S. L., Evans, M., Cosker, D. P., & Salo, A. I. T. (2018). A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Medicine - Open, 4(1). https://doi.org/10.1186/s40798-018-0139-y

Deci, E. L., & Ryan, R. M. (2000). Kk Verildi Dışşsal Ing Kaynak. Psychological Inquiry, 11(4), 227–268. https://doi.org/10.1207/S15327965PLI1104

E, I., Travel, O. F., Expenses, O., Hancock, A. D., Formation, A. F., Armstrong, N., Le, F., Faso, B., Le, F., On, F., Le, L. L. L. P. L., Kone, I., Ou, I., Laquelle, I., Quelle, T., Scheme, N. G., Pizer, W. A., Weintraub, S., Formation, A. F., … Gh, E. (2022). Yohanna. Journal of Economic Perspectives, 2(1), 1–4. http://www.ifpri.org/themes/gssp/gssp.htm%0Ahttp://files/171/Cardon - 2008 - Coaching d’équipe.pdf%0Ahttp://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203%0Ahttp://mpoc.org.my/malaysian-palm-oil-industry/%0Ahttps://doi.org/10.1080/23322039.2017

Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (2019). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406. https://doi.org/10.1037/0033-295x.100.3.363

Fadde, P. J., & Klein, G. A. (2010). Deliberate performance: Accelerating expertise in natural settings. Performance Improvement, 49(9), 5–14. https://doi.org/10.1002/pfi.20175

Fitts, P. M., & Posner, M. I. (1967). Human performance. Brooks/Cole Publishing.

Gagne, R. M., Wager, W. W., Golas, K. C., Keller, J. M., & Russell, J. D. (2005). Principles of instructional design, 5th edition. In Performance Improvement (Vol. 44, Issue 2). https://doi.org/10.1002/pfi.4140440211

Glazier, P. S. (2020). Human Movement Science Towards a Grand Unified Theory of sports performance. Human Movement Science Journal, 5(2), 1–18. https://doi.org/10.1016/j.humov.2015.08.001

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., & Peters, J. (2016). Using probabilistic movement primitives for striking movements. In IEEE-RAS International Conference on Humanoid Robots (pp. 502–508). https://doi.org/10.1109/HUMANOIDS.2016.7803322

Gonzalez, J. M., Tomlinson, J. E., Martínez Ceseña, E. A., Basheer, M., Obuobie, E., Padi, P. T., Addo, S., Baisie, R., Etichia, M., Hurford, A., Bottacin-Busolin, A., Matthews, J., Dalton, J., Smith, D. M., Sheffield, J., Panteli, M., & Harou, J. J. (2023). Designing diversified renewable energy systems to balance multisector performance. Nature Sustainability, 6(4), 415–427. https://doi.org/10.1038/s41893-022-01033-0

Hartveld, A. (1998). Qualitative Analysis of Human Movement. In Physiotherapy (Vol. 84, Issue 10). Human Kinetic. https://doi.org/10.1016/s0031-9406(05)65880-4

Li, L., & Smith, D. M. (2022). Corrigendum: Neural Efficiency in Athletes: A Systematic Review (Front. Behav. Neurosci., (2021), 15, (698555), 10.3389/fnbeh.2021.698555). In Frontiers in Behavioral Neuroscience (Vol. 16). https://doi.org/10.3389/fnbeh.2022.841772

Locke, E. A., Latham, G. P., & Edwin, A. (2002). Building a Practically Useful Theory of Goal Setting and Task Motivation. Maryland, 57(9), 705–717. https://doi.org/10.1037//0003-066X.57.9.705

Luckin. (2016). Citation Intelligence Unleashed. pearson Education. https://doi.org/https://oro.open.ac.uk/50104/

Novatchkov, H., & Baca, A. (2013). Artificial intelligence in sports on the example of weight training. Journal of Sports Science and Medicine, 12(1), 27–37.

Ohgi, Y. (2022). Microcomputer-based Acceleration Sensor Device for Sports Biomechanics - Stroke Evaluation by using Swimmer ’ s Wrist Acceleration. February 2002. https://doi.org/10.1109/ICSENS.2002.1037188

Olabi, A. G., Shehata, N., Sayed, E. T., Rodriguez, C., Anyanwu, R. C., Russell, C., & Abdelkareem, M. A. (2023). Role of microalgae in achieving sustainable development goals and circular economy. In Science of the Total Environment (Vol. 854). https://doi.org/10.1016/j.scitotenv.2022.158689

Raab, M., & Johnson, J. G. (2007). Expertise-Based Differences in Search and Option-Generation Strategies. Journal of Experimental Psychology: Applied, 13(3), 158–170. https://doi.org/10.1037/1076-898X.13.3.158

Schmidt, R. A., & Lee, T. D. (2019). Motor learning and performance: From principles to application (6 (ed.)). Human Kinetics.

Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual , auditory , haptic , and multimodal feedback in motor learning : A review. 21–53. https://doi.org/10.3758/s13423-012-0333-8

Sweller, J. (2020). Cognitive Load Theory. In The Psychology of Learning and Motivation (Vol. 55). Elsevier Inc. https://doi.org/10.1016/B978-0-12-387691-1.00002-8

Williams, A. M., & Ford, P. R. (2008). Expertise and expert performance in sport. International Review of Sport and Exercise Psychology, 1(1), 4–18. https://doi.org/10.1080/17509840701836867

Winter, D. A. (2009). BIOMECHANICS AND MOTOR CONTROL OF Fourth Edition. University of Waterloo, Waterloo.

Wu, C. H., & Chen, Y. X. (2024). The use of AI techniques in table tennis: Bibliometrics analysis. In ACM International Conference Proceeding Series (pp. 295–301). https://doi.org/10.1145/3678726.3678763

Zhang, L., Chen, F., Zhang, X., Li, Z., Zhao, Y., Lohaus, R., Chang, X., Dong, W., Ho, S. Y. W., Liu, X., Song, A., Chen, J., Guo, W., Wang, Z., Zhuang, Y., Wang, H., Chen, X., Hu, J., Liu, Y., … Tang, H. (2020). The water lily genome and the early evolution of flowering plants. Nature, 577(7788), 79–84. https://doi.org/10.1038/s41586-019-1852-5

Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020). A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. In Environmental Science and Technology (Vol. 54, Issue 7, pp. 3740–3751). https://doi.org/10.1021/acs.est.9b04535

Zimmerman, B. J., & Schunk, D. H. (2011). Handbook of Self-Regulation of Learning. City University.

Published

10/30/2025

How to Cite

Meirizal, Y. (2025). Implementation of Artificial Intelligence-Assisted Learning to Optimize Biomechanical Techniques and Decision Making Skills in Basketball Training for Young Athletes. Jurnal Master Penjas & Olahraga, 6(2), 769–777. https://doi.org/10.37742/jmpo.v6i2.176